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We study the role played by topological textures and antitextures during the phase ordering of a two-
dimensional system described by the discretized nonlinear O(3) o model with purely dissipative dynamics. We
identify and characterize two distinct mechanisms for the decay of the order parameter variations—single
texture unwinding, and topological charge annihilation. Our results show that, while at early times after the
quench, the annihilation process dominates, the unwinding processes become of comparable importance at later
times. We calculate the correlations in the order parameter and in the topological charge density, and show that
dynamical scaling is strongly violated due to the occurrence of multiple length scales growing differently in

time.
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The field of phase-ordering Kkinetics, investigating the
time evolution of a system quenched from the disordered
phase into the ordered phase, has attracted considerable at-
tention in recent years [1]. It has been shown that many
features of phase ordering in systems supporting topologi-
cally stable singular defects [for example, in systems de-
scribed by the O(N) vector model in d spatial dimensions
with d=N [2], or in two- and three-dimensional nematic
liquid crystals [3] ] can be understood theoretically by inves-
tigating the dynamics of the numerous topological defects
generated during the quench. In systems where topologically
stable singular objects cannot occur [for example, in the
O(N) model system in dimension d<N], such an approach
cannot be used. A special and interesting case is that of the
O(N) model system in N—1 spatial dimensions, which sup-
ports topologically stable, but nonsingular objects—
topological textures. The purpose of this paper is to report
results from an investigation of the role played by topologi-
cal textures during the phase ordering of an O(3) vector
model system in two spatial dimensions. This system has
been previously investigated by Toyoki [4], who calculated
the time dependence of the order parameter correlation func-
tion, and by Bray and Humayun [5], who investigated the
decay of the free energy in the system. A detailed analysis of
the phase-ordering process in terms of the behavior of the
topological objects present in this system, however, has not
been previously given [6].

The model investigated in our simulations is the nonlinear
O(3) o model on a two-dimensional lattice. The order pa-
rameter m is correspondingly a three-component vector with
unit magnitude; the local value of the order parameter
m(r,?) will be referred to as the spin. The phase-ordering
simulation is started with randomly oriented spins, corre-
sponding to the configuration generated immediately after a
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quench to zero temperature. The configuration is then
evolved using the dissipative dynamical equation

om
~§-=V2m—(m-V2m)m , 1)
where the second term on the right hand side enforces the
constraint m-m=1. To adequately describe the phase-
ordering process, Eq. (1) must be regularized on a scale
given by the equilibrium bulk correlation length; we effec-
tively impose the regularization condition by considering Eq.
(1) on a discrete lattice. We evolved Eq. (1) using the tech-
nique developed in Ref. [7] (based on the fourth order
Runge-Kutta method) appropriately adapted to our case. The
spatial discretization step was taken to be dx=dy=0.1, the
time step was dt=0.0002, and we worked with periodic
boundary conditions. We used system sizes between 252 and
512 lattice units, and our longest runs reached times ¢=40.

We now briefly review the concept of a topological tex-
ture [8]. The spin configuration of an example of a single
texture in an infinite continuum system is given by

_ 4ax 4ay
m0= gz - 0T g
r’—4q4?
mz(r)= r2+4a2 . (2)

The orientation of the spin changes from up in the center of
the texture (r=0) to down at the boundary of the system
(r=x), going through a vortexlike configuration with spins
pointing radially outwards on the circle r=2a. It is easily
seen that the spin configuration (2) covers the order param-
eter space (given in our case by the unit sphere in three
dimensions) exactly once, corresponding to a topological
charge of 1. It is possible to show that the configuration (2)
(or any global rotation thereof) has the minimum energy
[with energy density taken as (1/87)(Vm)?] of all configu-
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rations with topological charge 1. The value of the minimum
total energy is E=1. By an antitexture, we mean a configu-
ration similar to (2), but with m(r) replaced by —m,(r).
This configuration wraps around the spin sphere once, but in
the opposite sense compared to (2), corresponding to topo-
logical charge — 1.

The crucial quantity for our investigation of the role of
textures and antitextures in the phase ordering process is the
topological charge density q(r)

1
q(r)= Em- (9,mX g, m) 3)

which, when integrated over the whole system, gives the
total topological charge. For the single texture configuration
(2), the topological charge density has the form
q(r)=(1/m)4a*/(r*+4a*)?, and exhibits a pronounced
peak at r=0 with half-width 1.287a. For a single antitex-
ture, g(r) is of the same form, only negative.

In Figs. 1(a)-1(c), we plot the topological charge density
at a progressive series of times in a section of a system
undergoing phase ordering. The plots exhibit numerous well
defined peaks and antipeaks, corresponding at later times to
rather well separated textures and antitextures of varying
sizes. The average separation between the textures (or anti-
textures) grows, and at the latest time, the system is strongly
“intermittent” in the sense that the topological charge den-
sity differs significantly from zero only within very well lo-
calized regions, with the spin configuration practically ho-
mogeneous in between. Note that the “typical” texture size
does not appreciably increase with time.

A detailed inspection of series of plots similar to Fig. 1,
taken at more closely spaced values of time, reveals that the
variations in topological charge density decay through two
distinct processes: single texture (or antitexture) unwinding,
and topological charge annihilation. The first process appears
as a growing isolated peak in topological charge density, and
corresponds to a localized configuration of type (2) with de-
creasing size a. Such a process would conserve the total
topological charge and the total energy of the texture in a
continuum system; in a discrete system, however, this con-
servation is strongly violated once the texture size decreases
to several lattice spacings. Eventually, the texture comes (up
to a global rotation) close to the extreme configuration where
the spin points up at the center lattice point, and down ev-
erywhere else; such a configuration has only 1/27 of the
original texture energy. This configuration is followed by a
flip of the central spin, and the complete disappearance of the
texture [9]. The size a of the shrinking texture in our simu-
lation varied very roughly as 7V4, where 7 is the time re-
maining to the flip.

The second process visible in the topological charge den-
sity plots is the mutual annihilation of overlapping regions of
positive and negative topological charge density [overlap-
ping in the sense that they are not separated by a region
where g(r)=0]. In Fig. 2, we show the evolution starting
from a slightly overlapping texture-antitexture pair. The
height of the two peaks decays, and the overlap of the re-
gions of positive and negative g(r) increases with time. The
peaks initially move slightly together, but later move signifi-
cantly apart [10]. It is important to realize that this ‘“‘texture-
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FIG. 1. Surface plots of the topological charge density g(r) in
an 85X85 section of a phase-ordering system at time (a)
t=0.0356, (b) t=0.126, and (c) =1.59. The horizontal scale is in
units of one lattice spacing.

antitexture annihilation” process differs radically from the
process of annihilation of a singular defect with its antidefect
[e.g., a vortex and an antivortex in the two-dimensional
0O(2) model], where the singular cores keep their identities
and gradually approach. In the texture-antitexture annihila-
tion, the total charge enclosed by each of the regions of
positive and negative q(r) gradually decays to zero, and the
annihilation of topological charge occurs independently of
whether a complete texture and antitexture are present. In
contrast to this, the mechanism of unwinding (discussed in
the preceding paragraph) occurs only if the unwinding region
encloses a total topological charge close to 1 or — 1.

In order to assess the relative importance of the two pro-
cesses discussed above during phase ordering, we investi-
gated the time dependence of the quantities Q, and Q_,
defined by
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FIG. 4. Time dependences of the integrated absolute charge
q(r) P(¢) and the free energy E(t)=[d?r (1/87r)(Vm)? during phase
ordering of a system of size 512X 512, averaged over 14 initial
conditions. The dashed line has a slope of —0.64. Inset: the decay
—8 % 10-4 of the difference E(#)— P(¢). The full line has a slope of —0.92.
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FIG. 2. The process of topological charge annihilation, starting
from an overlapping full texture and antitexture. The plots show
q(r) for (a) t=0 (initial configuration) and (b) #=3.0. Note
that the vertical scale is different in (a) and (b). The quantity
P=[d?r|q(r)| decays from 1.54 in (a) to 0.89 in (b).
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where the integral is over the whole system. In a system with
well separated textures and antitextures, Q . counts the num-
ber of textures, Q_ counts the number of antitextures,
0=0,+0_ gives the total topological charge, and
P=Q . —Q_ counts the total number of topological objects
in the system. Figure 3 shows that, at late times, the total
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FIG. 3. Time dependences of the quantities Q_(z) (lower
curve), Q(¢) (middle curve), and Q , (¢) (upper curve) during phase
ordering of a system of size 252X 252. Inset: time dependence of
Gmax()-

topological charge Q=0 . + Q _ varies only in sharp steps of
size —1 (+1), corresponding to an unwinding of a single
texture (antitexture). The steps are also visible in the corre-
sponding Q . (¢) or Q _(#) curve (see Fig. 3). Note, however,
that while the Q(¢) curve is flat, the Q. (¢) and Q_(¢)
curves decay significantly in between the unwinding steps.
This demonstrates that the process of topological charge an-
nihilation, as defined earlier, takes place. The relative impor-
tance of the unwinding and annihilation processes in a given
time range is given by the ratio of the number of steps in the
Q(t) curve to the total drop of the integrated absolute topo-
logical charge density P=0 . —Q _ . In the time interval be-
tween t=3 and ¢= 30, this ratio is p=0.45, showing that in
this time range, unwindings and the annihilation processes
play almost equally important roles. At earlier times, it is
difficult to calculate the ratio p, as the total topological
charge Q of a large system no longer exhibits well separated
steps. A lower bound for p, however, may still be obtained
by counting the sharp peaks (see the inset in Fig. 3) occur-
ring in the curve q,,,.(¢), where q,,,, is defined as the maxi-
mum of |g(r)| over the whole system. Each peak corre-
sponds to the final stages of shrinking and consequent
flipping of a texture or antitexture; however, if two textures
unwind at almost the same time in two different parts of the
system, only one peak may be visible. Comparing the num-
ber of peaks with the drop in P(¢) in the time interval from
t=0.5 to t=1.0 gives p=0.25. This is consistent with the
expectation that since the textures and antitextures are better
separated as ¢ increases (see Fig. 1), p should increase with
time.

We now present results averaged over 14 runs in a system
of size 512, evolved until #=1.6. Longer runs in systems of
size 252 gave similar results. The total topological charge Q
was approximately conserved and close to zero [|Q(#)|<5 at
all ¢]. In Fig. 4, we plot the integrated absolute charge
P=Q,—0_, the free energy E, and their difference. The
asymptotic equality of E and P indicates that, at late times,
the system is well separated into textures and antitextures,
each of energy 1. Note that the inequality E(¢)>P(t) is
satisfied at all times; this is consistent with the well known
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[11] global inequality E=|Q| being valid inside each region
containing a texture or an antitexture [12]. Both P and E
decay asymptotically as ¢~ %64=092 indicating that the aver-
age separation D(t) between topological objects (textures or
antitextures) grows as t%32=%01 Note that this differs signifi-
cantly from the dimensional analysis prediction of a length
scale growing as t'2, and points towards the presence of
scaling violations. In contrast, the difference E(t)— P(t),
characterizing topologically trivial spin variations, decays as-
ymptotically as ¢~ %92%003 (see the inset in Fig. 4) which
agrees much better with the dimensional analysis result. The
onset of the approximate power-law regime for P(t) occurs
at t=0.02, corresponding to the time after which well
formed textures and antitextures are seen in the topological
charge density plots.

We calculated three separate correlation functions: the
spin-spin correlation C(r,t)=({m(x)-m(x+r)), the topo-
logical charge density correlation C ,(r,t)=(q(x)q(x+r))/
{q(x)q(x)), and the correlation of the absolute topological
charge density, C,(r,t)=(p(X)p(x+r))/{p(x)p(x)) [here
p(x)=|q(x)| ~(|qr), and () denotes averaging over the
whole system]. We define the length scales L(), L,(t), and
L ,(t) as the half-widths of the central maxima of the corre-
lation functions C(r,t), C,(r,t), and Cp(r,t), respectively.
We find that these length scales grow differently from each
other (see the inset in Fig. 5) and from the average separation
of topological objects D(t), indicating that dynamical scal-
ing is violated. The half-widths L ,(¢) and L () do not grow
as power laws of time, but rather as alog(bt), where a and
b are constants. The half-width of the spin-spin correlation,
L(t), grows much faster, and at late times fits the power law
L(t)oc[0'38t0‘02 [13]

We furthermore find that each family of the correlation
functions individually does not collapse onto a universal
curve, providing a further indication of the violation of dy-
namical scaling. In Fig. 5, we show an attempt to collapse
the correlation functions C(r,t), C,(r,t), and Cp(r,t) using
the lengths L(¢), L,(¢), and L,(¢). The lack of collapse is
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FIG. 5. The rescaled correlation functions C(r/L(t)),

C,(r/L ,(t)), and Cp(r/L(¢)) at specified times (see the main text
for definitions). Inset: growth of the length scales L(t), L (t), and
L,(t) (note that the graph is semilogarithmic).

most readily apparent in the topological charge correlation
C,(r,t). A more detailed discussion of our results for the
topological correlation functions will be given separately.
In conclusion, we have characterized the phase-ordering
kinetics in the investigated system in terms of the distinct
processes of single texture unwindings and topological
charge annihilation, and demonstrated that dynamical scaling
is strongly violated. Most of the methods developed in this
paper should be equally well applicable to phase ordering in
systems with topological textures in higher dimensions.
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